
   

Abstract and Keywords

The chapter explores “Mesopotamian mathematics,” which arose in the late fourth 

millennium bce, alongside a logographic script, both of which served in accounting. 

Writing, accounting, and calculation were in the hands of the manager-priests of the 

temples, who used the techniques to calculate and control land distribution to high 

officials, rations in kind to workers, and ingredients necessary for products such as beer. 

Mathematical texts include problems that seem practical but which would never occur in 

actual scribal work: their function was to display professional identity by exploiting a 

professional tool. The place-value system was created to simplify accurate calculations. 

Central to Old Babylonian mathematics were problems concerned with the properties of 

the sexagesimal system, as well as “algebraic” problems based on a set of four problems 

about rectangles with a given area, and some linear constraint. Such geometrical riddles 

have left traces in the pseudo-Heronian Geometrica collections and in medieval Islamic 

and Indian practical geometry and are likely to have inspired Euclid’s Elements II.
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1. Social Base and Role, and Gross 

Development

THE complex we now call “Mesopotamian mathematics” was shaped in the late fourth 

millennium BCE (this, and all following dates use “middle chronology”) during the so-
called proto-literate period, alongside a logographic script. The only function of both was 

to serve in accounting.
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The context in which the complex emerged was the first formation of a bureaucratic state 

in southern Iraq around the city Uruk (map A1a.1). Writing, accounting, and calculation 

were the responsibility and privilege of the manager-priests of the temples, who used the 

techniques in the calculation and control of land distribution to high officials, of rations in 

kind to workers, and of necessary ingredients in the production for instance of beer (one 

of the acceptable ways to make barley consumable for humans) (Nissen, Damerow, and 

Englund 1993).

The mathematical techniques were based on notations for a counting sequence and for 

metrologies for lengths, for areas (geared to length measures), for capacity, and for time 

(namely, an administrative calendar used for the allocation of fodder and perhaps rations, 

decoupled from sun and moon). The number system had a base 60 (or rather, 

alternatingly 10 and 6, in the same sense as the Roman numeral system has alternating 

bases 5 and 2); the metrologies had step factors that were fairly convenient within the 

sexagesimal counting system (as the factor 12 between inch and foot) but were not 

themselves sexagesimal, which indicates that they had been created as normalizations of 

preexisting “natural” measures. We also have evidence of the computation of rectangular 

and near-rectangular areas from the sides—the former as inherent in the gearing 

of the metrologies, the latter by means of the “surveyors’ formula,” average length times 

average width.

The evidence comes 

almost exclusively from 

discarded clay tablets that 

were used as filling 

material. This evidence is 

obviously incomplete yet 

complete enough to 

provide a good picture of 

mathematical practice. In 

particular it is clear that 

mathematics was taught in 

direct emulation of 

accounting routines: the 

only teaching texts we 

have are “model 
documents”—texts that lack an official’s seal and have nicer numbers than could be 

expected in real-life accounting but are otherwise indistinguishable from genuine 

accounting documents. Due to the pioneering efforts of Jöran Friberg (1978; 1979) and 

the computerized analysis of the complete corpus by Peter Damerow and Robert Englund 

(1987) we understand the numerical and metrological notations better than the linguistic 

aspect of the script.

Click to view larger

Map A1a.1  Sumerian and Babylonian sites.

Ancient World Mapping Center.
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The temple-centered Uruk state had an ill-documented breakdown in the early third 

millennium. During the ensuing “Early Dynastic” period, a polycentric system of city-
states emerged, in which political power was taken over by a king (a military leader) and 

the temples became subordinate. For a couple of centuries, written evidence is almost 

completely lacking, but around 2600 BCE we find new accounting material from Ur (First 

Dynasty of Ur, famous for its Royal Tombs), and soon afterward much more from the city 

Shuruppak (shortly before that we also have the earliest royal inscription).

It is clear from Ur and Shuruppak that neither the writing tradition nor the 

mathematical techniques had been extinguished—their absence from the horizon during 

the intermediate centuries can only in part be due to rarefaction of the tradition. But 

Shuruppak (from whose epoch we also have the first literary texts, a proverb collection 

and a hymn [Biggs 1974]) tells us much more. First, scribes turn up as a particular 

profession (growing out of but also away from the class of temple managers), moreover 

with professional specializations (contracts written by one scribe refer to the presence of 

another one responsible for mensuration).

We also find an innovation in mathematics education: “supra-utilitarian” problems, that 
is, problems that seemingly deal with practice but would never turn up in real-life scribal 

work. They do not represent theory. From a modern perspective they look like 

“mathematics for fun,” in the style of riddles; at the time, their function was rather to 

manifest professional identity through testing and display of the scope of a professional 

tool (just as the writing of literary texts tests the other main tool); and it would be 

mistaken to impose a dichotomy pure/applied. One example asks for the distribution of 

the contents of a “granary”—known to consist of 40∙60 “tuns” of 8∙60 “liters” each—in 

rations of 7 “liters”; it exists in two copies, one of which is answered correctly, while the 

other calculation is either incomplete or wrong (Høyrup 1982). The merit of the problem 

is the division of a huge quantity by a factor that is at odds with the metrology (and which 

was never used in administrative practice). From Shuruppak we also have the first “table 

of squares”—geometrical squares, given in area metrology, corresponding to sides given 

in length measure.

We know Shuruppak (or rather its last year) so well because the city was destroyed in a 

military attack. The next informative phase is the “Old Akkadian period” (2335–2193), 
during which first southern Iraq, and then for a while a much more extensive area, was 

united into or controlled by a single regional state established by Sargon of Akkad (the so 

far unidentified city in central Iraq which gave its name to the “Akkadian” language, of 
which Babylonian is a dialect). Scribes and scribal culture lost nothing of their 

importance because of the change. Literature, invented in the preceding period as an 

expression of scribal identity, was adopted as royal propaganda bolstering the legitimacy 

of the new state. Supra-utilitarian mathematics could serve no similar purpose. However, 

the scale of administration and accounting grew (Foster 1982). Moreover, the epoch has 

left a number of supra-utilitarian school problems about area calculation—for instance, 
asking for one of the dimensions of a rectangle of which the area and the other dimension 

are known (Foster and Robson 2004). These problems are not “striking” or “funny,” and 

(p. 13) 
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they may perhaps reflect autonomization of mathematics teaching from immediate 

practice rather than the formation of professional identity. In any case, they contain the 

rudiments of a specific vocabulary for problem solution (on which more below).

In spite of the incipient introduction of supra-utilitarian problems, Early Dynastic and 

Sargonic mathematics was first of all an accounting and mensurational technique, and 

thus centered on metrology. A new weight metrology was created from scratch, with all 

step factors equal to 60—except for the step between the “shekel” and the “barleycorn,” 

which differed by a factor 3∙60 (obviously because the barleycorn is a natural 

measure that could be normalized but not changed radically). The same trend of 

“sexagesimalization” can be seen in the upward and downward extension of existing 

metrologies. However, when a Sargonic “royal” capacity metrology was introduced—
probably not meant to replace the local metrologies but to serve royal administrative 

purposes—the traditional structure was only modified to fit bureaucratic procedures, 
which were allowed to overrule the purely mathematical rationality of sexagesimalization.

The next centralization of power, under the Third Dynasty of Ur (2112–2004; or Ur III), 
overcame the contradiction between mathematical and bureaucratic rationality, and 

thereby did much more. The context was a centralized economy (established ca 2075, 

probably as part of a military reform); a large fraction of production was taken care of by 

workers’ troops managed by overseer scribes—how large is disputed and probably 

undecidable because production outside state management would leave relatively few 

written traces. The scribes were responsible for the output of their crew, calculated 

according to fixed norms in units equivalent to 1/60 of a working day, or corresponding 

amounts of grain or silver—the debit being calculated from the number of workers (male, 
female, children) allotted to the overseer and borrowed from other crews, the credit from 

the yield and from the number of workers who were loaned to other scribes or who were 

ill, deceased, or in flight. The overseer’s yearly deficit was accumulated, and if at his 

death his family could not cover it, its members and household slaves would be thrown 

into the labor troops as slaves—“that deficit is (therewith) resolved,” as one accounting 

text states (Englund 1991, 268).

In its principles (Englund 1990, 13–90), the accounting system was thus not far from 

double-entry bookkeeping. Its use asked for a huge amount of calculations. As a simple 

illustration, we may think of the task of carrying the bricks of a certain type for a wall of 

given dimensions over a certain distance. Even if one knew how much a worker was 

supposed to carry a day, to find the corresponding number of working days would be 

prohibitively complicated if calculations were made in traditional non-sexagesimal 

metrologies.

The solution was the creation of a new numeral system: a floating-point place-value 

system with base 60, accompanied by “metrological tables” translating all units and 

relevant multiples into place-value multiples of a basic unit for each metrological system, 

and by tables of technical constants telling, for example, how many bricks of a given type 

a man could carry a unit distance in one day (say, a), and how many of them went into a 

(p. 14) 
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unit volume (say, b). Then the dimensions of our wall would have to be expressed in place-

value numbers and multiplied together, the product multiplied by b and next divided by a. 

The multiplications could be made by means of tables of multiples, and the division as a 

multiplication by the reciprocal of a (technical constants were always chosen so as to 

possess a finite reciprocal); both tables of multiples and of reciprocals were learned by 

heart. Obviously, this floating-point system was only used for intermediate calculations; 

final results were written down in the traditional notation, in which the order of 

magnitude was well-defined.

The basic idea of place-value sexagesimalization had been experimented on for centuries, 

but all texts preceding Ur III that try to make use of it contain errors (Powell 

1976), showing that the system was not yet there. Without the complete system, including 

metrological tables and tables of multiples, reciprocals and technical constants, place-

value computation was of no use. Addition and subtraction, indeed, had no need for place-

value operations: they had been performed on some kind of reckoning board known as a 

“hand” at least since Shuruppak (Proust 2000; Høyrup 2002b).

The planned introduction of a complete technical system, mathematical or otherwise, has 

few parallels until recent centuries. The “place-value system” was, indeed, not only 

mathematical but also eminently social: it could only work if its users were thoroughly 

trained in an adequate teaching institution. Of this institution we know nothing except 

through its continuation in the ensuing “Old Babylonian” period—but it must have been 

there from the start; comparison with such systems as the Assyrian military machine or 

modern railway structures, also technical as well as social, is thus not off the mark.

The implementation of a place-value system within a single generation may be confronted 

with the millennium or more it took for the Chinese rod numerals to give rise through 

spontaneous development to a genuine place-value notation (Martzloff 2006, 185–188). 
The cost (which the creators of the system hardly considered a cost) appears to have 

been complete elimination of the culture of mathematical problems and of supra-

utilitarian mathematics (Høyrup 2002c). As in proto-literate times, the only mathematics 

teaching texts we know from the period are model documents and arithmetical tables 

probably meant for training.

The Ur III Empire lost control of its peripheral conquests in 2025, and the core itself 

dissolved into smaller states in 2004. The initially leading successor (Isin) attempted to 

continue Ur III ideologically; to a gradually lessening extent, centralized management 

also persisted, but in the 18th century we see both increased weight of private 

management and an ideological impact of this change. The private person steps forward 

in a way that was unknown before—private letter writing, private seals, and even 

personal tutelary gods turn up. In scribal ideology (as known from the texts used to 

inculcate professional pride in the scribal school), an ideal of being particularly human

appears. This “scribal humanism” emphasized supra-utilitarian abilities: ability to read 

and speak Sumerian—the dead prestige language of the scribal tradition—and familiarity 

(p. 15) 
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with occult meanings of cuneiform signs. Mathematics used in surveying and accounting 

also enter the list, but the texts are not specific beyond that.

However, mathematical texts are more informative. Throughout the Old Babylonian epoch 

(2000–1600) the place-value system and all its appurtenant tables were trained together 

with the determination of simple areas and volumes; from the city Nippur the material 

suffices to reconstruct the complete syllabus (Robson 2002; Proust 2008). All the more 

strangely, that level of sophisticated supra-utilitarian mathematics that is commonly 

known as “(Old) Babylonian mathematics” is virtually absent from Nippur, where 

Sumerian literature was taught at the same time as simple multiplications (as also 

elsewhere); we must conclude that sophisticated supra-utilitarian mathematics was not 

part even of the full normal curriculum but was only practiced in specialized schools (the 

texts in question are in an indubitable school format).

The first evidence for the appearance of this kind of mathematics comes from 

19th or very early 18th-century Ur in the south (Friberg 2000) and from contemporary 

Mari in the extreme northwestern periphery (Soubeyran 1984). The mathematics of the 

texts from Ur seem to descend primarily from the Ur III tradition, but with two 

conspicuous innovations: it sometimes serves for the creation of supra-utilitarian 

problems; moreover, these problems are sometimes structured in a rudimentary problem 

format, asking the question by means of the logogram en.nam, “what,” and stating that 
the result is “seen.” Already the Old Akkadian texts had “seen” results; but since they had 

asked the question by means of the possessive suffix .bi, “its [length, etc.],” absent from 

the Ur problems, direct transmission through the Ur III school is unlikely.

Mari had never been part of the Ur III Empire, but at some moment it must have 

borrowed the place-value system, superimposing it upon and amalgamating it with its 

own decimal counting system (as happened in much of the Syrian area, cf. Chambon 

2011). Most of the mathematical texts that have been found are tables of multiples, 

inverses, and inverse squares. One, however, is quite different, namely a calculation 

(without problem format) of the famous “grain on a chess-board problem” (though 

ascending only to 30, which was usual until the invention of chess). It shows where Old 

Babylonian mathematics teachers could find inspiration for supra-utilitarian mathematics: 

namely from traditions of mathematical riddles carried by practitioners’ traditions (in the 

present case probably traveling merchants—Mari was on an important trade route).

The important step, however, seems to have been taken in Eshnunna, a state in 

mideastern Mesopotamia that had been subject to Ur III between 2075 and 2025, and 

which in general appears to have been the cultural center of central Mesopotamia around 

1800 (before the rise of Babylonia).

The earliest mathematical Eshnunna text, from ca 1790, contains a problem about the 

subdivision of a right triangle (Baqir 1950a). It uses a format sufficiently close to that of 

Ur to suggest a connection and sufficiently different to exclude direct descent. More 

interesting is a rather large group of texts from ca 1775 (Baqir 1950b; 1951; 1962; al-

Rawi and Roaf 1984; Gonçalves 2015; etc.). On one hand, it shows familiarity with almost 

(p. 16) 



Mesopotamian Mathematics

   

all the main problem types that characterize mature Old Babylonian mathematics, in 

particular the so-called “algebra” (on which more below). On the other, it displays rather 

elaborate formats, homogeneous in subgroups but varying between these and unequally 

developed—implying that a canonical way to write problems was deliberately sought but 
agreement had not yet been reached. Inspiration for problems was taken in part from the 

Ur III computational tradition, in part from riddles circulating among nonscribal, 

probably Akkadian-speaking surveyors.

Eshnunna was conquered and destroyed by Hammurabi’s Babylon in 1761 (and Mari in 

1758). After that we know of no mathematical texts from the area, and its cultural role 

was taken over by Babylon; Hammurabi’s famous law code could have been directly 

inspired by one produced in Eshnunna around 1790. Perhaps because the Old Babylonian 

strata of Babylon are covered by ruins from later epochs, we have no evidence that 

Hammurabi also brought mathematics or mathematics teachers to Babylon.

However, we do have sophisticated mathematical texts from the subsequent 

period. Almost all of them come from illegal diggings, and therefore only internal 

evidence allows us to determine their origin. However, a first division of the corpus into 

distinct groups was made by Albrecht Goetze (1945) on the basis of orthography; analysis 

of the terminology allows further refinement (Høyrup 2002a, 317–361).

A number of texts were produced in the former Sumerian cities Uruk and Larsa between 

the 1740s and the 1720s (by 1720 the south had seceded, and literate culture appears to 

have withered away). An interesting text from Larsa (AO 8862), roughly contemporary 

with a dated text from 1749, shows evidence of belonging to the earliest phase of a local 

development—especially a vacillating terminology. Other texts belonging to the same 

orthographic group confirm this.

Two distinct groups from Uruk seem mature. Both are highly standardized, reflecting a 

deliberate effort to develop a canonical format. However, almost everywhere a choice is 

possible, the choices of the two groups differ. The most likely explanation appears to be 

conflict or competition between two schools or teachers.

On one account, however, all of these texts, and all others from the south, agree: although 

an oblique reference shows the idiom to be familiar, they never state that a result is 

“seen,” as done not only in the Old Akkadian texts but also in the problem texts from Ur 

and in many of the Eshnunna texts. The avoidance must be deliberate: what may have 

been brought to Babylon was reformulated to demarcate the southern developments from 

what (probably) was done in Babylon.

After 1720, perhaps before, many scholars from the south went north, and from the 17th 

century we have a number of sophisticated mathematical texts from northern Babylonia. 

Some of these may draw on traditions coming from the south, while a group from the 

town Sippar seems (according to terminology and closeness to practical surveying habits) 

to be local (and thus somehow related to the Eshnunna group).

(p. 17) 
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In 1595, Babylonia fell first to a Hittite raid and next to Kassite warrior tribes. During the 

following centuries, traces of literate culture are rare, and the scholarly scribal tradition 

seems to have been kept alive in “scribal families.” These families conserved and 

systematized traditions concerned with language studies (not least Sumerian), omens, 

and medicine cum incantation; sophisticated mathematics appears to have been 

disregarded. Place-value computation and the appurtenant metrologies may have been 

remembered. In any case, the Assyrian king Assurbanipal not only collected the 

scholarship of the scribal families in his mid-7th-century library but also boasted of being 

able to multiply and find reciprocals. Less scholarly calculators probably also kept place-

value calculation alive while developing new metrologies closer to the cares and ways of 

actual agriculture.

In the 5th century it seems that some of the scholar-scribes who were involved in the 

development of mathematical astronomy were also aware that sophisticated mathematics 

ought to be part of their interest. We have a few texts of “algebraic” character (in the 

same sense as in the Old Babylonian period), but their way to find Sumerian equivalents 

for Akkadian terms shows that these were reinventions; so, once more the inspiration 

appears to have been riddles belonging to Akkadian- (or, by now, Aramaic-) speaking 

surveyors.

Another couple of such texts were produced in the 3rd century within the same 

environment. Terminology, topics, and methods show that they do not descend from the 

5th-century texts. Some of their characteristic problems turn up in Demotic Egypt at the 

same time; by then, Assyrian, Achaemenid, and Macedonian armies with their surveyors 

and tax collectors had been familiar visitors or masters of Egypt for half a millennium. All 

we may conclude is thus that the scholar-scribes this time borrowed from practitioners 

whose activity also made itself felt in Egypt.

In summary, accounting and mensurational mathematics had been a key ingredient in the 

formation of the first Sumerian state, and even when royal military power took over 

leadership in the Early Dynastic and Sargonic state, the scribal carriers of mathematical 

competence retained a high prestige—(cf. Visicato 2000). During Ur III, scribal 

competence, also in accounting mathematics, was something the king boasted of 

possessing—irrespective of the unpleasant social situation of those actually responsible 

for the accounts. Even during the mature Old Babylonian period, where accounting 

justice no longer served as legitimization of power, mathematical competence was still 

part of the same scribal curriculum as Sumerian literature, and thus shared the prestige 

of scribes.

In those phases where independent scribal professional identity existed, it also found 

expression in the devising of supra-utilitarian mathematics.

All this changed after the collapse of the Old Babylonian system. Subsequently, scribal 

scholarship and mathematical practice appear to have separated, being carried by 

distinct social groups. In the first millennium, when written evidence becomes abundant 

again, scholar-scribes became ritual experts and omen interpreters for the Assyrian 

(p. 18) 
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rulers, whose correspondences with the scholars have survived. Material planning and 

accounting was certainly no less important for the Assyrian Empire, but the names of 

those who took care of such matters have not been preserved—they had no more cultural 
distinction than the practical calculators of Greco-Roman antiquity, and they wrote 

alphabetically on perishable material, not as the prestigious scholars in cuneiform on 

clay.

2 (Old) Babylonian Mathematics, and Afterlife

What is normally presented in histories of mathematics as Babylonian mathematics is the 

supra-utilitarian level of Old Babylonian mathematics, perhaps mixing in some Seleucid 

text without making any temporal distinction; this is also what is contrasted with, and 

sometimes connected to, Greek (theoretical) mathematics.

Actually, the scope of the higher level of Old Babylonian mathematics was wider than this

—see for example the texts in Neugebauer 1935–1937; Neugebauer and Sachs 1945. 

Not everything is supra-utilitarian; we also find utilitarian problems about 

carrying bricks, the amount of dirt needed for a construction project, and so on—
calculations an Ur III overseer scribe had been accustomed to perform. But supra-

utilitarian problems were certainly central.

Some of these had to do 

with the properties of the 

sexagesimal system—for 

instance, an elegant 

method for finding 

reciprocals of difficult 

numbers. Many more, 

however, belong with the 

so-called “algebra”. (I here 

summarize some of the 

main results of Høyrup 

2002a.)

It appears that the starting 

point for this discipline 

was a set of four problems 

about rectangles with a 

given area, for which was also known one of (1) the length, (2) the width, (3) the sum of 

length and width, or (4) the difference between these. (1) and (2) had already been dealt 

with in the Sargonic school; the trick by means of which (3) and (4) could be solved was 

probably discovered between 2200 and 1900 in an Akkadian-speaking lay surveyor’s 

Click to view larger

Figure A1a.1  Babylonian rectangle problem, similar 

to Euclid, Elements II.6.

Drawing by author.
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environment, within which the problems are likely to have circulated as professional 

riddles.

The trick to solve (4) is shown in figure A1a.1: the area of the heavily drawn rectangle 

⊏⊐(a,b) is known to be A, while the known difference between the sides is d = a−b. First, 

the difference is bisected, and the part P is moved to Q so as to form a gnomon together 

with the unmoved part of the rectangle. This gnomon still has area A. In its corner, the 

shaded square □(d/2) is fitted in. This produces a completed square with area A + □(d/2), 

whose side s is found. Joining d/2 to s gives the length a of the rectangle, removing it gives 

the width b.

The same trick can be used to find the side of a square □(c) if the sum □(c)+c = A of the 

area and the side is known—we just observe that □(c)+c = ⊏⊐(c+1,c). Even this seems to 

have existed as a surveyor’s riddle.

The problem, as well as the procedure, is easily translated into equation algebra. In the 

square-plus-side version it becomes

(omiting negative numbers, which the Babylonians did not have). This is the 

primary reason that it has been customary to speak of “Babylonian algebra.”

However, there may be better reasons (whether they are sufficient depends on taste and 

definitions). Indeed, the square and rectangle problems themselves are almost absent 

from the record. What we find are mostly complicated problems which, with 

transformations that correspond to linear equation manipulations, can be reduced to the 

simple problems, and others that do not deal at all with geometric entities but can be 

translated (as we may translate geometric problems into algebraic pure-number 

questions). One example (VAT 8520 #1, Neugebauer 1935–1937, 1.346) dealing with 

igûm and igibûm, a pair of numbers from the table of reciprocals, states in literal 

translation that

the 13th of the accumulation of igûm and igibûm to 6 I have repeated, from inside the 

igûm I have torn out, ½ it leaves

– in symbols, if a is the igûm and b is the igibûm (whence a∙b = 1)

This is transformed into a rectangle problem of type (3),

from which a and b are easily found. In other problems, prices, areas or volumes are 

represented by linear magnitudes.

(p. 20) 
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When H. S. Schuster and Otto Neugebauer discovered this “algebra” around 1930, they 

took the geometric terminology to be a purely arithmetical imagery (as with us a “square 

number”), and Neugebauer (1936, 250) thought the so-called geometric algebra of 

Elements II to be a translation of a Babylonian arithmetical technique into geometry, 

undertaken in order to save its results from the philosophical threat or “foundation crisis” 

assumed to have resulted from the discovery of irrationality. Once it is realized that 

already the Babylonian technique was based on geometry, Babylonian inspiration seems 

even more plausible, despite Arpád Szabó (1969, 455–456)—as a matter of fact, the 

diagram in figure A1a.1 only differs from that of Elements II.6 by the absence of a 

diagonal by means of which Euclid performs the construction instead of just “moving 

around” a rectangle. (The diagram of rectangle problem (3) is equally close to that of 
Elements II.5.)

However, some difficulties remain. First, could the Greeks have known the Babylonian 

technique? This was doubted by Szabó, but the difficulty is worse than he knew, since 

what Neugebauer had spoken about was an Old Babylonian technique that had 

disappeared a millennium before Thales’s times. (The Seleucid texts make use of 
diagrams that do not correspond to Elements II, and the 5th-century problems, formulated 

in discordant area- and length-metrologies, are equally irrelevant.)

Second, Elements II solves no problems, at most its theorems can be claimed to 

correspond to algebraic identities, in which Babylonian texts (Old or Late) show no 

interest; this was also seen by Szabó. Third, we find nothing in Greek mathematics that 

corresponds to the fully developed Old Babylonian discipline, only counterparts 

(transformed into “identities”) of the original riddles.

We know, however, that the riddle tradition was still alive in the Islamic Middle Ages, and 

even reached medieval India (Høyrup 2001). It has also left traces in the pseudo‒
Heronian Geometrica collections. It is more than plausible that archaic Greeks 

encountered it in the same Aramaic-speaking region that gave them their alphabet. As 

the alphabet, it was probably not only adopted but also adapted; in any case, the earliest 

certain Greek evidence we have for it is precisely Elements II—the fragment of 
Hippocrates of Chios constitutes a plausible but indirect and not very informative trace, 

and oblique references in the Platonic corpus (Høyrup 1990) are no more certain. What 

we find here is not a technique but, so to speak, a critique of this technique, putting 

things on a metatheoretically firm footing and thus determining its possibilities and limits 

(Möglichkeit und Grenzen, in Kant’s words). This had been the aim of the Old Babylonian 

teachers to a very restricted extent only—in order to serve the professional identity of 
scribes, what they did had to remain supra-utilitarian: that is, to look relevant to the task 

of the calculating scribe, which had always been to find the right numerical answer. The 

limited amount of critique we find appears to be connected to pedagogical concerns—for 

instance, in explaining the method of rectangle problem (3) as above, to point out that a

and b are found by moving the same piece d/2 back to its original position, for which 

reason it has to be removed before it can be joined. Early texts, indeed, do as above, and 

(p. 21) 
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add before they subtract (for the Babylonians, as for us, this was the normal order); 

mature texts respect the concreteness of the procedure, doing it the other (concretely 

meaningful) way around.

On the elementary level, it is no wonder that the Greeks borrowed part of the metrology 

of their Phoenician trading partners, some of which was again an adaptation of 

Mesopotamian metrology. The sexagesimal place-value system was borrowed (along with 

many planetary parameters and information about observations) and used in Greek 

mathematical astronomy, though only for the fractional part of numbers (whence our 

“minutes,” “seconds,” etc.). During the Middle Ages and the Renaissance, it inspired 

several attempts to implement decimal fractions—ultimately successful in Simon Stevin’s 

De thiende from 1585.

Bibliography

Al-Rawi, Farouk N. H., and Michael Roaf. “Ten Old Babylonian Mathematical Problem 

Texts from Tell Haddad, Himrin.” Sumer 43 (1984): 195–218.

Baqir, Taha. “An Important Mathematical Problem Text from Tell Harmal.” Sumer 6 

(1950a): 39–54.

———. “Another Important Mathematical Text from Tell Harmal.” Sumer 6 (1950b): 130–
148.

———. “Some More Mathematical Texts from Tell Harmal.” Sumer 7 (1951): 28–45.

———. “Tell Dhiba’i: New Mathematical Texts.” Sumer 18 (1962): 11–14, pl. 1–3.

Biggs, Robert D. Inscriptions from Tell Abū Ṣalābīkh. Chicago: University of Chicago 

Press, 1974.

Chambon, Grégory. Normes et pratiques: L’homme, la mesure et l’écriture en 

Mésopotamie. I. Les mesures de capacité et de poids en Syrie Ancienne, d’Ebla à Émar. 

Gladbeck: PeWe-Verlag, 2011.

Damerow, Peter, and Robert K. Englund. “Die Zahlzeichensysteme der Archaischen Texte 

aus Uruk.” In Zeichenliste der Archaischen Texte aus Uruk, Band II, ed. M. W. Green and 

Hans J. Nissen, Kapitel 3, 117–166. Berlin: Gebr. Mann, 1987.

Englund, Robert K. Organisation und Verwaltung der Ur III-Fischerei. Berlin: Dietrich 

Reimer, 1990.

———. “Dairy Metrology in Mesopotamia.” Iraq 53 (1991): 101–104.

Foster, Benjamin R. “Archives and Record-Keeping in Sargonic Mesopotamia.” Zeitschrift 

für Assyriologie und Vorderasiatische Archäologie 72 (1982): 1–27.

(p. 22) 



Mesopotamian Mathematics

   

Foster, Benjamin, and Eleanor Robson. “A New Look at the Sargonic Mathematical 
Corpus.” Zeitschrift für Assyriologie und Vorderasiatische Archäologie 94 (2004): 1–15.

Friberg, Jöran. “The Third Millennium Roots of Babylonian Mathematics. I. A Method for 

the Decipherment, through Mathematical and Metrological Analysis, of Proto-Sumerian 

and Proto-Elamite Semi-Pictographic Inscriptions.” Department of Mathematics, 
Chalmers University of Technology and the University of Göteborg, no. 1978–9, 1978.

———. “The Early Roots of Babylonian Mathematics. II: Metrological Relations in a Group 

of Semi-Pictographic Tablets of the Jemdet Nasr Type, Probably from Uruk-Warka.” 

Department of Mathematics, Chalmers University of Technology and the University of 

Göteborg, no. 1979–15, 1979.

———. “Mathematics at Ur in the Old Babylonian Period.” Revue d’Assyriologie et 
d’Archéologie Orientale 94 (2000): 97–188.

Goetze, Albrecht. “The Akkadian Dialects of the Old Babylonian Mathematical Texts.” In 

Mathematical Cuneiform Texts, ed. O. Neugebauer and A. Sachs, 146–151. New Haven, 
CT: American Oriental Society, 1945.

Gonçalves, Carlos. Mathematical Tablets from Tell Harmal. Cham, Switzerland: Springer, 

2015.

Høyrup, Jens. “Investigations of an Early Sumerian Division Problem, c. 2500 B.C.” 

Historia Mathematica 9 (1982): 19–36.

———. “Dýnamis, the Babylonians, and Theaetetus 147c7—148d7.” Historia Mathematica

17 (1990): 201–222.

———. “On a Collection of Geometrical Riddles and Their Role in the Shaping of Four to 

Six ‘Algebras.’” Science in Context 14 (2001): 85–131.

———. Lengths, Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin. New 

York: Springer, 2002a.

———. “A Note on Old Babylonian Computational Techniques.” Historia Mathematica 29 

(2002b): 193–198.

———. “How to Educate a Kapo, or, Reflections on the Absence of a Culture of 
Mathematical Problems in Ur III.” In Under One Sky: Astronomy and Mathematics in the 

Ancient Near East, ed. John M. Steele and Annette Imhausen, 121–145. Münster: Ugarit-
Verlag, 2002c.

Martzloff, Jean-Claude. A History of Chinese Mathematics. Corrected Second Printing. 

Berlin: Springer, 2006.

Neugebauer, O. Mathematische Keilschrift-Texte. Vols. 1‒3. Berlin: Julius Springer, 1935–
1937.



Mesopotamian Mathematics

   

———. “Zur geometrischen Algebra (Studien zur Geschichte der antiken Algebra III).” 

Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung 

B: Studien 3(2) (1936): 245–259.

Neugebauer, O., and A. Sachs. Mathematical Cuneiform Texts. New Haven, CT: American 

Oriental Society, 1945.

Nissen, Hans J., Peter Damerow, and Robert Englund. Archaic Bookkeeping: 

Writing and Techniques of Economic Administration in the Ancient Near East. Chicago: 

Chicago University Press, 1993.

Powell, Marvin A. “The Antecedents of Old Babylonian Place Notation and the Early 

History of Babylonian Mathematics.” Historia Mathematica 3 (1976): 417–439.

Proust, Christine. “La multiplication babylonienne: la part non écrite du calcul.” Revue 

d’Histoire des Mathématiques 6 (2000): 293–303.

———. “Quantifier et calculer: usages des nombres à Nippur.” Revue d’Histoire des 

Mathématiques 14 (2008): 143–209.

Robson, Eleanor. “More than Metrology: Mathematics Education in an Old Babylonian 

Scribe School.” In Under One Sky: Astronomy and Mathematics in the Ancient Near East, 

ed. John M. Steele and Annette Imhausen, 325–365. Münster: Ugarit-Verlag, 2002.

Soubeyran, Denis. “Textes mathématiques de Mari.” Revue d’Assyriologie 78 (1984): 19–
48.

Szabó, Arpád. Anfänge der griechischen Mathematik. München and Wien: R. 

Oldenbourg / Budapest: Akadémiai Kiadó, 1969.

Visicato, Giuseppe. The Power and the Writing: The Early Scribes of Mesopotamia. 

Bethesda, MD: CDL Press, 2000.

Jens Høyrup

Jens Høyrup, Section for Philosophy and Science Studies, Roskilde University, 

Roskilde, Denmark

(p. 23) 

(p. 24) 


